Normality of Nilpotent Varieties

نویسنده

  • ERIC SOMMERS
چکیده

We determine which nilpotent orbits in E6 have closures which are normal varieties and which do not. At the same time we are able to verify a conjecture in [14] concerning functions on nonspecial nilpotent orbits for E6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normality of Nilpotent Varieties in E6

We determine which nilpotent orbits in E6 have closures which are normal varieties and which do not. At the same time we are able to verify a conjecture in [14] concerning functions on nonspecial nilpotent orbits for E6.

متن کامل

Some Remarks on Nakajima’s Quiver Varieties of Type A

We try to clarify the relations between quiver varieties of type A and Kraft-Procesi proof of normality of nilpotent conjugacy classes closures.

متن کامل

Normality of Orbit Closures in the Enhanced Nilpotent Cone

We continue the study of the closures of GL(V )-orbits in the enhanced nilpotent cone V × N begun by the first two authors. We prove that each closure is an invariant-theoretic quotient of a suitably-defined enhanced quiver variety. We conjecture, and prove in special cases, that these enhanced quiver varieties are normal complete intersections, implying that the enhanced nilpotent orbit closur...

متن کامل

Normality of very even nilpotent varieties in D-2l

For the classical groups, Kraft and Procesi [4], [5] have resolved the question of which nilpotent orbits have closures which are normal and which are not, with the exception of the very even orbits inD2l which have partition of the form (a, b) for a > b even natural numbers satisfying ak + b = 2l. In this article, these orbits are shown to have normal closure using the technique of [8].

متن کامل

Projective Normality of Model Varieties and Related Results

We prove that the multiplication of sections of globally generated line bundles on a model wonderful varietyM of simply connected type is always surjective. This follows by a general argument which works for every wonderful variety and reduces the study of the surjectivity for every couple of globally generated line bundles to a finite number of cases. As a consequence, the cone defined by a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008